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The R-Dynamic Local Irregularity Vertex Coloring
Of Graph

A.l. Kristiana, M. I. Utoyo, Dafik, R. Alfarisi, E. Waluyo

Abstract: We define the r-dynamic local irregularity vertex coloring. Suppose . : V(G) = {1.2, ... , k} is called vertex irregular k-labeling and w : V(G) =
Nwhere w(u) =¥ ,cyqg (). A is called r-dynamic local irregular vertex coloring, if: (i) opt(r) = min{max{Li}; » vertex irregular k-labeling}, (ii) for every
uv e E(G), w(u) # w(v), and (iii) for every v e V(G) such that [w(N(v))| = min{r, d(v)}. The chromatic number r-dynamic local imegular denoted by 7. (G),
is minimum of cardinality r-dynamic local irregular vertex coloring. We study the r-dynamic local imegularity vertex coloring of graph and we have found

the exact value of chromatic number r-dynamic local irregularity of some graph.

Index Terms: r-dynamic coloring, local irregularity, vertex coloring.

1 [INTRODUCTION
GRAPH in this paper are simple and finite. For v € V(G), let
N(v) denote the set of vertices adjacent to v in G and d(v) =
|N(w)|. Vertices in N(v) are neighbors of v. Montgomery [3]
Btroduced the r-dynamic coloring. Let r be a positive integer.
An r-dynamic k-coloring is a proper vertex k-coloring such
that every vertex v receives at least min{r, d(ta Furthermore
Lai defined r-dynamic chromatic number that the minimum k,
which G admits an r-dynamic k-coloring and is denoted y,(G).
Kristiana, et.al [1] defined local irregularity vertex coloring.
Suppose [ : V(G) =2 {1, 2, ... k} is called vertex irregular k-
labeling and w : V(G) 2 N where w(u) = Xyenpyl(¥), 1is
called local irregularity vertex coloring, if (i) max(l) =
min{max{l;} and (ii) for every uv e E(G)w(u) # w(v).
Furthermore Kristiana, et.al [2] founged chromatic number
local irregularity of path graph, cycle graph, complete graph,
bipartite complete graph, star graph, and friendship graph. In
this paper, we combine r-dynamic coloring and local
irregularity vertex coloring.
2 RESULT
In this paper, we present new definition of the r-dynamic local
irregularity vertex coloring of graph and the chromatic
number r-dynamic local irregular. We study the exact value of
chromatic number r-dynamic local irregular of some graphs.

Definition 1

Let & : V(G) = {1,2, ..., k| is called vertex irregular k-labeling
V(G) & N where w(u) = Xyenay 2(v). A is called r-
dynamic local irregular vertex coloring, if:

and w :
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i. opt(h) = min{max{ii}; L vertex irregular k-labeling}
ii. Forevery uv € E(G), w(u) # w(v)
iii. For every v € V(G) such that lw(N(v))| = min{r, d(v)}.

Definition 2

The chromatic number r-dynamic local irregular denoted by
Xiis(G), is minimum of cardinality r-dynamic local irregular
vertex coloring.

For r =1 is called chromatic number local irregular and for r =
2 is called chromatic number dynamic local irregular.
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Figure 1. An example of local irregularity r-dynamic

Illustration of local irregularity r-dynamic vertex coloring is
presented in Figure 1.

Observation 1
Let be graph G, where N(u) = N(v), graph G doesn’t have local
irregularity vertex coloring for r = 2.

Based on Observation 1, some graph don’t have local
irregularity r-dynamic for r = 2, namely star graph, path graph
with order 3 and bipartite graph.

Observation 2
Let be G connected graph, local irregularity r-dynamic vertex
coloring for r = 2 have opt() = 3.

Lemma 1

Graph connected G, x[;(6) = xis(G)

Proof: Let b : V(G) < N be local irregularity vertex coloring,
for uv € E(G), b(u) #b(v).

Xus(6) = min{|b(V(6))|; b local irregularity vertex coloring}
Based on Definition 1, b is vertex irregular k-labeling such that
Xis(6) < [b(V(®)))].

Thus, y;:5(6) < min{|b(V(®))|} = xiis(6). o
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Theorem 1

Let P, path graph, x;s (Pn) = 4 wherenz6

Proof: V(P,) ={a;, 1 <i < n}and E(P,) ={a;a; 1<i < n}

Based on Observation 1, opt(4) = 3 and Based on Lemma 1, the
lower bound chromatic number r-dynamic is yji(Pn) =
Xiis(P). Further, it will be shown the upper bound, we define
L:V(P,) 2> {1, 2,3}

Case 1. Forn=0 (mod 3)

1,
May) =42,
3,

It easy to see opt(i) = 3 and weight function as follows:

i=1(mod3),1<i=n
i=2(mod3),1<i =n
i=0(mod3),1<i =n

2, i=1n
3, i=0(mod3)2<i=n-1
W@ =94 i=2(mod3),2<i <n-1
5 i=1(mod3)2<i =n-1
Case 2. Forn=1 (mod 3)
1, i=1(mod3),1<i=n-2
Ma;) =42, i=n—1lnori=2(mod3),1<i <n-2
3, i=0(mod3),1<i <=n-—-2
It easy to see opt(i) = 3 and weight function as follows:
2, i=1n
3, i=n—-2ori=0(mod3),2<i=n-2
W@ =94 —n_1ori=2(mod3),2<i<n-2
5 i=1(mod3),2 <i<n-—-2
Case 3. Forn=2 (mod 3)
1, i=nori=0(mod3),1<is=n-1
Ma) =42, i=2(mod3),1<i =n-1
3, i=1(mod3),1<i <=n-1

It easy to see opt(i) = 3 and weight function as follows:

2, i=1n-1
(a) = 3, i=nori=1(mod3),2<i =sn—-1
WA =9y, i=2(mod3)2<i<n-—1
, i=0(mod3),2<i<n-1
For every uv € E(P,), u = @, v = a4y, 1 =i < n-1 obtained w(a;) #

w(a1). For a; € V( P,) such that |w(a;)| = min{r, d(a;)}. Based
on Definition 1, w is called local irregularity r-dynamic.
Weight function obtain |w(V(P»))| = 4. Thus, y;s(P) = 4.
Hence, yj;;(P,) = 4. The proof is complete. ul
Ilustration the r-dynamic local irregularity vertex coloring of
path graph is presented in Figure 2.

e)ojo)oJoJoXoJolo
3 1 2 3 1 ﬂs

2

Figure 2. The 2-dynamic local irregularity of Py

Theorem 2
Let C. be cycle graph, forn =5
3, n =0 (mod 3)
Xiis(Cn) =14, n=7

5 n=12(mod3)n=7

1
Proof: V(C,) ={a;, 1 <i < n-1}and E(C,) ={aiai; 1<i< n-1} v
{a.a1}. Based on Observation 1, opt(4) = 3 and Based on Lemma
1, the lower bound chromatic number r-dynamic is yj;(C,) =

ISSN 2277-8616

Xuis(Cy) = 3. Further, it will be shown the upper bound, we
define & : V(C,) =2 {1, 2, 3}.
Case 1. Forn =0 (mod 3)

i=1(mod3),1<i=<n

1
Ma;) =42, i=2(mod3),1<i<n
3, i=0(mod3),1<i =n

It easy to see opt(i) = 3 and weight function as follows:
3, i=0(moed3),1<i=n
w(a;) =44, i=2(mod3),1<i =n
5 i=1(mod3),1<i<=n

For every uv € E(C,), u = @;, v = aj41, 1 =i = n-1 obtained w(a;) #
w(ai+1) and u = a,, v = @, obtained w(a,) # w(m). For a; e V(C,)
such that |w(N(a))| = min{r, 2}. Based on Definition 1, w is
called local irregularity r-dynamic. Weight function obtain
|w(V(C,)) | =3.Thus, x (C,) < 3.
Hence x};(C,) = 3
Case 2. Forn=7
1, n=24

Ma;) = IZ, n=0567

3, n=13

It easy to see opt(i) = 3 and weight function as follows:
2, i=3
3, i=15
4, i=26

5 i=47
For every uv € E(C,), u = @;, v = aj41, 1 =i = n-1 obtained w(a;,) #
w(ai+1) and u = a,, v = @, obtained w(a,) # w(a). Fora; e V( )
such that |w(N(a))| = min{r, 2}. Based on Definition 1, w is
called local irregularity r-dynamic. Weight function obtain
|w(V(C.)) | =4.Thus, yj;(Cy) < 4.
Hence y;;.(gf)= 4
Case3.Forn=12 (mod 3), n#7
Subcasel. Forn=1 (mod3),n#7

wia;) =

1, i=2n—-1lori=1(mod3),4<i=n-3
l(ai-)=[2, i=nori=2(mod3),4<i =n-3
3, i=1ln—-2ori=0(mod3),3<i =n-3
It easy to see opt(i) = 3 and weight function as follows:
2, i=3n-2
3, i=1lori=0(mod3),4=<i=n-—4
w(g)=4{ 4, i=nori=2(mod3),4<i <n—4
5 i=n—-lori=2(mod3),4<i =n-—4
6, i=2n-3
Subcase 2. For n =2 (mod 3)
1, i=1(mod3),1<i<n-1
Ma;) =42, i=2(mod3),1<i =n-—-1
3, i=nori=0(mod3),1=i=n-1
It easy to see opt(i) = 3 and weight function as follows:
2, i=n
3, i=0(mod3),1<i =n-2
wla;)=+4, i=2(mod3),1<i <n-2
5, i=1(mod3),1<i =n-2
6, i=n—-1

For every uv € E(Cy), u = @i, v = ais1, 1 <i < -1 obtained w(a;,) #
w(ai+1) and u = a,, v = 1, obtained w(a,) # w(m). For a; e V(C,)
such that |w(N(a))| = min{r, 2}. Based on Definition 1, w is
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called local irregularity r-dynamic. Weight function obtain
lw(V(C,))| =5. Thus, £, (€,) < 5.

Hence y},.(C,,) = 5.

The proof is complete. [m]
Iustration the r-dynamic local irregularity vertex coloring of
cycle graph is presented in Figure 3.

Figure 3. The 2-dynamic local irregularity of C;

Theorem 3

Let K, be complete graph, x:[.s (Kn) =n

Proof: V(K,) = {a;,1=i<n}. Suppose u,v € V(K,), Based on
Observation 3, N(u) - {v} = N(v) - {u} so that A(u) # A(v). It
show labeling of every vertex in complete graph as different.
So opt(i) = n. Based on Lemma 1, x:'.s (Kn) = Xis (Kn) =n
Further, to show the upper bound, we define & : V(K,) = {1, 2,

... , n} where A( a;) =i, 1 =i < n. weight function is w(a;) =
@ —i. Becausei =1, 2, ... ,n, where |w(V(K,))| = n so that
n= X“'S(Kn) = X:['s(Kﬂ) < |wV(K,)| =n Thus, yj(K,)=n
The proof is complete. [m]

3 CoNncLusiOoN

In this paper we have studied the r-dynamic local irregularity
vertex coloring. We have concluded the exact value of the
chromatic number r-dynamic local irregular of some graphs,
namely path graph, cycle graph and complete graph.
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