Submission date: 20-Apr-2021 11:29AM (UTC+0700) **Submission ID:** 1564370909 File name: 10._IJSTR_arika_jilid-10-12.pdf (643.12K) Word count: 1673 Character count: 7766 # The R-Dynamic Local Irregularity Vertex Coloring Of Graph A. I. Kristiana, M. I. Utoyo, Dafik, R. Alfarisi, E. Waluyo Abstract: We define the r-dynamic local irregularity vertex coloring. Suppose $\lambda : V(G) \rightarrow \{1,2,\ldots,k\}$ is called vertex irregular k-labeling and $w : V(G) \rightarrow \{1,2,\ldots,k\}$ N where $w(u) = \sum_{v \in N(u)} \lambda(v)$. λ is called r-dynamic local irregular vertex coloring, if: (i) opt(λ) = min{max{\$\lambda\$}}; λ , vertex irregular k-labeling}, (ii) for every $uv \in E(G)$, $w(u) \neq w(v)$, and (iii) for every $v \in V(G)$ such that $|w(N(v))| \geq \min\{r, d(v)\}$. The chromatic number r-dynamic local irregular denoted by $\chi_{lis}^{r}(G)$, is minimum of cardinality r-dynamic local irregular vertex coloring. We study the r-dynamic local irregularity vertex coloring of graph and we have found the exact value of chromatic number r-dynamic local irregularity of some graph. Index Terms: r-dynamic coloring, local irregularity, vertex coloring. # 1 Introduction GRAPH in this paper are simple and finite. For $v \in V(G)$, let N(v) denote the set of vertices adjacent to v in G and d(v) =|N(v)|. Vertices in N(v) are neighbors of v. Montgomery [3] ftroduced the r-dynamic coloring. Let r be a positive integer. An r-dynamic k-coloring is a proper vertex k-coloring such that every vertex v receives at least min $\{r, d(v)\}$. Furthermore Lai defined r-dynamic chromatic number that the minimum k, which G admits an r-dynamic k-coloring and is denoted $\chi_t(G)$. Kristiana, et.al [1] defined local irregularity vertex coloring. Suppose $l: V(G) \rightarrow \{1, 2, ..., k\}$ is called vertex irregular klabeling and $w: V(G) \rightarrow N$ where $w(u) = \sum_{v \in N(u)} l(v)$, l is called local irregularity vertex coloring, if (i) max(l) = $\min\{\max\{l_i\} \text{ and (ii) for every } uv \in E(G), w(u) \neq w(v).$ Furthermore Kristiana, et.al [2] founded chromatic number local irregularity of path graph, cycle graph, complete graph, bipartite complete graph, star graph, and friendship graph. In this paper, we combine r-dynamic coloring and local irregularity vertex coloring. # 2 RESULT In this paper, we present new definition of the r-dynamic local irregularity vertex coloring of graph and the chromatic number r-dynamic local irregular. We study the exact value of chromatic number r-dynamic local irregular of some graphs. # Definition 1 Let $\lambda: V(G) \rightarrow \{1,2,\ldots,k\}$ is called vertex irregular k-labeling and $w: V(G) \rightarrow N$ where $w(u) = \sum_{v \in N(u)} \lambda(v)$. λ is called rdynamic local irregular vertex coloring, if: - Arika Indah 7 istiana, University of Jember, Jember, Indonesia. - arika.fkip@unej.ac.id Moh. Imam Utoyo, University of Airlangga, Surabaya, Indonesia. - Eko Waluyo, Islamic Institute of Zainul Hasan, Probolinggo, Indonesia. ekocasper29@gmail.com - $opt(\lambda) = min\{max\{\lambda i\}; \lambda_i \text{ vertex irregular k-labeling}\}$ - ii. For every $uv \in E(G)$, $w(u) \neq w(v)$ - iii. For every $v \in V(G)$ such that $|w(N(v))| \ge \min\{r, d(v)\}$. #### Definition 2 The chromatic number r-dynamic local irregular denoted by $\chi_{lis}^{r}(G)$, is minimum of cardinality r-dynamic local irregular vertex coloring. For r = 1 is called chromatic number local irregular and for r =2 is called chromatic number dynamic local irregular. Figure 1. An example of local irregularity *r*-dynamic Illustration of local irregularity r-dynamic vertex coloring is presented in Figure 1. # Observation 1 Let be graph G, where N(u) = N(v), graph G doesn't have local irregularity vertex coloring for $r \ge 2$. Based on Observation 1, some graph don't have local irregularity r-dynamic for $r \ge 2$, namely star graph, path graph with order 3 and bipartite graph. # Observation 2 Let be G connected graph, local irregularity r-dynamic vertex coloring for $r \ge 2$ have opt(λ) ≥ 3 . Graph connected G, $\chi_{lis}^r(G) \ge \chi_{lis}(G)$ Proof: Let $b: V(G) \rightarrow N$ be local irregularity vertex coloring, for $uv \in E(G)$, $b(u) \neq b(v)$. $\chi_{lis}(G) = \min\{|b(V(G))|; b \text{ local irregularity vertex coloring}\}$ Based on Definition 1, b is vertex irregular k-labeling such that $\chi_{lis}(G) \leq |b(V(G))|.$ Thus, $\chi_{lis}(G) \leq \min\{|b(V(G))|\} = \chi_{lis}^r(G)$. #### Theorem 1 Let P_n 11 path graph, $\chi_{lis}^r(P_n) = 4$ where $n \ge 6$ **Proof**: $V(P_n) = \{a_i, 1 \le i \le n\}$ and $E(P_n) = \{a_i \ a_{i+1}; \ 1 \le i \le n\}$ Based on Observation 1, opt(λ) = 3 and Based on Lemma 1, the lower bound chromatic number r-dynamic is $\chi_{lis}^r(Pn) \ge$ $\chi_{lis}(P)$. Further, it will be shown the upper bound, we define $\lambda: V(P_n) \to \{1, 2, 3\}.$ Case 1. For $n \equiv 0 \pmod{3}$ $$\lambda(a_i) = \begin{cases} 1, & i \equiv 1 \ (mod \ 3), 1 \le i \le n \\ 2, & i \equiv 2 \ (mod \ 3), 1 \le i \le n \\ 3, & i \equiv 0 \ (mod \ 3), 1 \le i \le n \end{cases}$$ It easy to see opt(λ) = 3 and weight function as follows: $$w(a_i) = \begin{cases} 2, & i = 1, n \\ 3, & i \equiv 0 \pmod{3}, 2 \le i \le n - 1 \\ 4, & i \equiv 2 \pmod{3}, 2 \le i \le n - 1 \\ 5, & i \equiv 1 \pmod{3}, 2 \le i \le n - 1 \end{cases}$$ Case 2. For $n \equiv 1 \pmod{3}$ $$\lambda(a_i) = \begin{cases} 1 & \text{(mod 3)}, 1 \le i \le n-2 \\ 2, & i = n-1, n \text{ or } i \equiv 2 \pmod{3}, 1 \le i \le n-2 \\ 3, & i \equiv 0 \pmod{3}, 1 \le i \le n-2 \end{cases}$$ It easy to see $opt(\lambda)$ = 3 and weight function as follows: $$w(a_i) = \begin{cases} 2, & i = 1, n \\ 3, & i = n - 2 \text{ or } i \equiv 0 \pmod{3}, 2 \le i \le n - 2 \\ 4, & i = n - 1 \text{ or } i \equiv 2 \pmod{3}, 2 \le i \le n - 2 \\ 5, & i \equiv 1 \pmod{3}, 2 \le i \le n - 2 \end{cases}$$ Case 3. For $n \equiv 2 \pmod{3}$ $$\lambda(a_i) = \begin{cases} 1, & i = n \text{ or } i \equiv 0 \pmod{3}, 1 \le i \le n - 1 \\ 2, & i \equiv 2 \pmod{3}, 1 \le i \le n - 1 \\ 3, & i \equiv 1 \pmod{3}, 1 \le i \le n - 1 \end{cases}$$ It easy to see $$\operatorname{opt}(\lambda) = 3$$ and weight function as follows: $$w(a_i) = \begin{cases} 2, & i = 1, n-1 \\ 3, & i = n \text{ or } i \equiv 1 \; (mod \; 3), 2 \leq i \leq n-1 \\ 4, & i \equiv 2 \; (mod \; 3), 2 \leq i \leq n-1 \\ 5, & i \equiv 0 \; (mod \; 3), 2 \leq i \leq n-1 \end{cases}$$ For every $uv \in E(P_n)$, $u = a_i$, $v = a_{i+1}$, $1 \le i \le n-1$ obtained $w(a_i) \ne a_i$ $w(a_{i+1})$. For $a_i \in V(P_n)$ such that $|w(a_i)| \ge \min\{r, d(a_i)\}$. Based on Definition 1, w is called local irregularity r-dynamic. Weight function obtain $|w(V(P_n))| = 4$. Thus, $\chi_{lis}^r(P_n) \le 4$. Hence, $\chi_{lis}^r(P_n) = 4$. The proof is complete. Illustration the r-dynamic local irregularity vertex coloring of path graph is presented in Figure 2. Figure 2. The 2-dynamic local irregularity of P_9 ### Theorem 2 Theorem 2 Let $$C_n$$ be cycle graph, for $n \ge 5$ $$\chi^r_{lis}(C_n) = \begin{cases} 3, & n \equiv 0 \ (mod \ 3) \\ 4, & n = 7 \\ 5, & n \equiv 1,2 \ (mod \ 3), n \ne 7 \end{cases}$$ $\{a_na_1\}$. Based on Observation 1, opt(λ) = 3 and Based on Lemma 1, the lower bound chromatic number r-dynamic is $\chi^r_{lis}(C_n) \geq w(a_{i+1})$ and $u = a_n$, $v = a_1$ obtained $w(a_n) \neq w(a_1)$. For $a_i \in V(C_n)$ such that $|w(N(a_i))| \geq \min\{r, 2\}$. Based on Definition 1, w is $\chi_{lis}(C_n) = 3$. Further, it will be shown the upper bound, we define $\lambda: V(C_n) \rightarrow \{1, 2, 3\}.$ Case 1. For $n \equiv 0 \pmod{3}$ $$\lambda(a_i) = \begin{cases} 1, & i \equiv 1 \; (mod \; 3), 1 \le i \le n \\ 2, & i \equiv 2 \; (mod \; 3), 1 \le i \le n \\ 3, & i \equiv 0 \; (mod \; 3), 1 \le i \le n \end{cases}$$ It easy to see opt(λ) = 3 and weight function as follows: $$w(a_i) = \begin{cases} 3, & i \equiv 0 \ (mod \ 3), 1 \le i \le n \\ 4, & i \equiv 2 \ (mod \ 3), 1 \le i \le n \\ 5, & i \equiv 1 \ (mod \ 3), 1 \le i \le n \end{cases}$$ For every $uv \in E(C_n)$, $u = a_i$, $v = a_{i+1}$, $1 \le i \le n-1$ obtained $w(a_i) \ne a_i$ $w(a_{i+1})$ and $u = a_n$, $v = a_1$ obtained $w(a_n) \neq w(a_1)$. For $a_i \in V(C_n)$ such that $|w(N(a_i))| \ge \min\{r, 2\}$. Based on Definition 1, w is called local irregularity r-dynamic. Weight function obtain $|w(V(C_n))| = 3$. Thus, $\chi_{lis}^r(C_n) \le 3$. Hence $\chi_{lis}^r(C_n) = 3$ Case 2. For n = 7 $$\lambda(a_i) = \begin{cases} 1, & n = 2,4 \\ 2, & n = 5,6,7 \\ 3, & n = 1,3 \end{cases}$$ It easy to see $opt(\lambda) = 3$ and weight function as follows: $$w(a_i) = \begin{cases} 2, & i = 3 \\ 3, & i = 1,5 \\ 4, & i = 2,6 \\ 5, & i = 4,7 \end{cases}$$ For every $uv \in \overline{E(C_n)}$, $u = a_i$, $v = a_{i+1}$, $1 \le i \le n-1$ obtained $w(a_i) \ne 0$ $w(a_{i+1})$ and $u = a_n$, $v = a_1$ obtained $w(a_n) \neq w(a_1)$. For $a_i \in V(C_7)$ such that $|w(N(a_i))| \ge \min\{r, 2\}$. Based on Definition 1, w is called local irregularity r-dynamic. Weight function obtain $|w(V(C_n))| = 4$. Thus, $\chi_{lis}^r(C_n) \le 4$. Hence $\chi_{lis}^r(11) = 4$ Case 3. For $n = 1, 2 \pmod{3}$, $n \ne 7$ Subcase 1. For $n \equiv 1 \pmod{3}$, $n \neq 7$ $$\lambda(a_i) = \begin{cases} 1, & i = 2, n-1 \text{ or } i \equiv 1 \pmod{3}, 4 \le i \le n-3 \\ 2, & i = n \text{ or } i \equiv 2 \pmod{3}, 4 \le i \le n-3 \\ 3, & i = 1, n-2 \text{ or } i \equiv 0 \pmod{3}, 3 \le i \le n-3 \end{cases}$$ It easy to see $$\operatorname{opt}(\lambda) = 3$$ and weight function as follows: $$w(a_i) = \begin{cases} 2, & i = 3, n-2 \\ 3, & i = 1 \text{ or } i \equiv 0 \pmod{3}, 4 \leq i \leq n-4 \\ 4, & i = n \text{ or } i \equiv 2 \pmod{3}, 4 \leq i \leq n-4 \\ 5, & i = n-1 \text{ or } i \equiv 2 \pmod{3}, 4 \leq i \leq n-4 \\ 6, & i = 2, n-3 \end{cases}$$ Subcase 2. For $n \equiv 2 \pmod{3}$ $$\lambda(a_i) = \begin{cases} 1, & i \equiv 1 \ (mod \ 3), 1 \le i \le n-1 \\ 2, & i \equiv 2 \ (mod \ 3), 1 \le i \le n-1 \\ 3, & i = n \text{ or } i \equiv 0 \ (mod \ 3), 1 \le i \le n-1 \end{cases}$$ It easy to see $opt(\lambda) = 3$ and weight function as follows: $$w(a_i) = \begin{cases} 2, & i = n \\ 3, & i \equiv 0 \ (mod \ 3), 1 \le i \le n-2 \\ 4, & i \equiv 2 \ (mod \ 3), 1 \le i \le n-2 \\ 5, & i \equiv 1 \ (mod \ 3), 1 \le i \le n-2 \\ 6, & i = n-1 \end{cases}$$ **Proof**: $V(C_n) = \{a_i, 1 \le i \le n-1\}$ and $E(C_n) = \{a_i \ a_{i+1}; \ 1 \le i \le n-1\} \cup For \text{ every } uv \in E(C_n), u = a_i, v = a_{i+1}, 1 \le i \le n-1 \text{ obtained } w(a_i, j \ne n-1) \}$ called local irregularity r-dynamic. Weight function obtain $|w(V(C_n))| = 5$. Thus, $\chi_{lis}^r(C_n) \le 5$. Hence $\chi_{lis}^r(C_n) = 5$. The proof is complete. Illustration the r-dynamic local irregularity vertex coloring of cycle graph is presented in Figure 3. Figure 3. The 2-dynamic local irregularity of C_7 #### Theorem 3 Let K_n be complete graph, $\chi^r_{lis}(K_n) = n$ Proof: $V(K_n) = \{a_i, 1 \le i \le n\}$. Suppose $u, v \in V(K_n)$, Based on Observation 3, N(u) - $\{v\}$ = N(v) - $\{u\}$ so that $\lambda(u) \neq \lambda(v)$. It show labeling of every vertex in complete graph as different. n) where $\lambda(a_i) = i$, $1 \le i \le n$. weight function is $w(a_i) = i$, $1 \le i \le n$. -i. Because i = 1, 2, ..., n, where $|w(V(K_n))| = n$ so that $\frac{1}{n} = \chi_{lis}(K_n) \le \chi_{lis}^r(K_n) \le |w(V(K_n))| = n. \quad \text{Thus,} \quad \chi_{lis}^r(K_n) = n.$ The proof is complete. #### 3 CONCLUSION In this paper we have studied the *r*-dynamic local irregularity vertex coloring. We have concluded the exact value of the chromatic number r-dynamic local irregular of some graphs, namely path graph, cycle graph and complete graph. # ACKNOWLEDGMENT We gratefully acknowledgment the support from University of Jember of 2019. # REFERENCES - [1] M. Alishahi, "on the dynamic coloring of graphs," Discrete Applied Mathematics, vol. 159, pp. 152-156, 2011. - [2] S. Jahanbekam, J. Kim, Suil. O and D. B. West, "On rdynamic coloring of graphs," Discrete Applied Mathematics, vol. 206, pp. 65-72, 2016. - [3] A.I. Kristiana, M. I. Utoyo, Dafik, Slamin, R. Alfarisi, and I. H. Agustin, "Local irregularity vertex coloring of graph," International Journal of Civil Engineering and Technology, vol. 10, issue 3, pp. 1606-1616. 2019. - [4] A. I. Kristiana, M. I. Utoyo, Dafik, R. Alfarisi, I. H. Agustin, and E. Waluyo., " On the chromatic number local irregularity of related wheel graph," Journal of Physics: Conf. Series, 1211, 012003, 2019. - [5] B. Montgomery, "Dynamic coloring of graphs," PhD dissertation, Department of Mathematics West Virginia Dniversity, Morgantown, 2001. - [6] A. Taherkhani, "On r-dynamic chromatic number of graphs," Discrete Applied Mathematics, vol. 201, pp. 222-227, 2016. | GI | ΝΔΙ | ITV | RF | PORT | |----|-----|-----|----|------| 16% SIMILARITY INDEX **7**% INTERNET SOURCES 15% PUBLICATIONS % STUDENT PAPERS # **PRIMARY SOURCES** Jia Bao Liu, Sana Akram, Muhammad Javaid, Abdul Raheem, Roslan Hasni. "Bounds of Degree-Based Molecular Descriptors for Generalized -sum Graphs ", Discrete Dynamics in Nature and Society, 2021 4% www.revistaproyecciones.cl 2% Ridho Alfarisi, Dafik, Arika Indah Kristiana. "Resolving domination number of graphs", Discrete Mathematics, Algorithms and Applications, 2019 2% Publication 4 www.ijstr.org Internet Source 2% Sogol Jahanbekam, Jaehoon Kim, Suil O, Douglas B. West. "On r-dynamic coloring of graphs", Discrete Applied Mathematics, 2016 1 % 6 penelitian.uisu.ac.id 1 % | 7 | Dian Puspita Hapsari, Imam Utoyo, Santi
Wulan Purnami. "Fractional Gradient Descent
Optimizer for Linear Classifier Support Vector
Machine", 2020 Third International
Conference on Vocational Education and
Electrical Engineering (ICVEE), 2020
Publication | 1 % | |----|---|-----| | 8 | Ali Taherkhani. " On -dynamic chromatic
number of graphs ", Discrete Applied
Mathematics, 2016
Publication | 1% | | 9 | "Co-Secure Set Domination in Graphs",
International Journal of Recent Technology
and Engineering, 2020 | 1% | | 10 | Dan Yi, Junlei Zhu, Lixia Feng, Jiaxin Wang,
Mengyini Yang. "Optimal r-dynamic coloring
of sparse graphs", Journal of Combinatorial
Optimization, 2019 | 1 % | | 11 | R. S. Booth. "Location of Zeros of Derivatives. II", SIAM Journal on Applied Mathematics, 1969 Publication | 1 % | Exclude quotes On Exclude matches < 1%